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Based on a nonequilibrium heat transfer model in the living tissue obtained by performing volume aver-
age to the local instantaneous energy equations for blood and tissues, the dual-phase lag bioheat equa-
tions with blood or tissue temperature as sole unknown temperature are obtained by eliminating the
tissue or blood temperature from the nonequilibrium model. The present dual-phase model successfully
overcame the drawbacks of the existing dual-phase lag bioheat equation obtained by simply modifying
the classical Pennes bioheat equation. Under the dual-phase model developed in this work, the phase lag
times are expressed in terms of the properties of blood and tissue and the interphase convective heat
transfer coefficient and blood perfusion rate. The phase lag times for heat flux and temperature gradient
for the living tissue are estimated using the available properties from the literature. It is found that the
phase lag times for heat flux and temperature gradient for the living tissue are very close to each other.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer in living tissue is accompanied by metabolic heat
generation and blood perfusion. The former results from a series of
chemical reactions occurring in the living cells; while the latter in-
volves energy exchange between the living tissue and blood flow-
ing through small capillaries in the tissue. During hyperthermia
therapy in which external heat source is applied to the tissue,
the bioheat equation [1] can be expressed as

qscs
@Ts

@t
¼ r � ðkrTsÞ þwbcbðTb � TsÞ þ Sm þ S ð1Þ

where Sm and S are the source terms due to metabolic heating and
hyperthermia therapy. Eq. (1) is one of the earliest bioheat equa-
tions that describes the temperature in a living tissue. The artery
blood temperature, Tb, was assumed to be uniform throughout the
tissue and the vein blood temperature was assumed to be equal
to the tissue temperature. In addition, the blood perfusion effect
is assumed to be homogeneous and isotropic, i.e., the effect of direc-
tional blood flow cannot be described by the Pennes bioheat equa-
tion. Although the Pennes bioheat equation is questionable, it has
been applied with great success as an analytical tool with which
blood perfusion rate can be determined from experimentally mea-
sured local temperature gradients and heat flows. Since the Pennes
ll rights reserved.
bioheat equation was proposed, it has been referred in nearly all
works in the area of bioheat transfer.

In addition to the drawbacks discussed above, the Pennes bio-
heat equation is also based the classical Fourier’s law of heat
conduction:

qðr; tÞ ¼ �krTðr; tÞ ð2Þ
which assumes that thermal disturbance propagates with an infi-
nite speed. As heat conduction in the biological tissue is accom-
plished by interaction between the blood and the tissue, the
prorogation of thermal disturbance is always at a finite speed. For
heat transfer in biological materials with nonhomogeneous inner
structures, heat flux equilibrates to the imposed temperature gradi-
ent via a relaxation mechanism [2–4]. To incorporate such a non-
traditional mechanism, hyperbolic thermal wave models [5–7] have
been proposed. In this methodology, the Fourier’s law is replaced
by:

qðr; tÞ þ s @qðr; tÞ
@t

¼ �krTðr; tÞ ð3Þ

where s is the thermal relaxation time. Kaminski [3] suggested that
the thermal relaxation time for biological systems is in the range of
20–30 s. Mitra et al. [4] experimentally measured the thermal relax-
ation time and reported that s for a processed meat was approxi-
mately 16 s. These values are very high and have been criticized
by many researchers. If Eq. (3) is used to replace Eq. (2) in derivation
of Pennes bioheat equation, the following bioheat equation is
obtained:
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Nomenclature

ab specific heat transfer area [m2/m3]
cb specific heat of blood [J/(kg K)]
cs specific heat of tissues [J/(kg K)]
db diameter of the blood vessel [m]
G coupling factor between blood and tissue [W/(m3 K)]
ha heat transfer coefficient inside the blood vessel [W/

(m2 K)]
kb thermal conductivity of blood [W/(m K)]
ks thermal conductivity of tissue [W/(m K)]
Nu Nusselt number
q00 heat flux vector [W/m2]
r position vector [m]
S heat source due to hyperthermia therapy [W/m3]
Sm source terms due to metabolic heating [W/m3]
t time [s]
Tb blood temperature [K]
Ts tissue temperature [K]

V intrinsic phase averaged blood velocity vector [m/s]
wb blood perfusion rate [kg/s]

Greek symbols
a thermal diffusivity [m2/s]
e porosity
qb blood mass density [kg/m3]
qs tissue density [kg/m3]
s thermal relaxation time in hyperbolic model [s]
sq phase lag time of the heat flux [s]
sT phase lag of the temperature gradient [s]

Subscripts
b blood
eff effective
s solid matrix (tissue)
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s @
2Ts

@t2 þ 1þwbcb

qc
sq

� �
@Ts

@t
¼ asr2Ts þ

wbcb

qscs
ðTb � TsÞ þ

wbcbs
qscs

@Tb

@t

þ Sm þ S
qc

þ s
qscs

@Sm

@t
þ @S
@t

� �
ð4Þ

which is referred to as hyperbolic bioheat equation [7]. In laser
hyperthermia, laser coagulation, and laser surgery, the thermal ef-
fect of the lasers are employed. If the pulse width of the laser is
shorter than the thermal relaxation time, the hyperbolic effect must
be taken into account.

Eq. (3) can be viewed as the first order approximation of the fol-
lowing equation:

q00ðr; t þ sÞ ¼ �krTðr; tÞ ð5Þ

which indicates that there is a delay between the heat flux vector
and the temperature gradient. For the same point in the conduction
medium, the temperature gradient is established at time t, but the
heat flux vector will be established at a later time t + s, i.e., the
relaxation time, s, can be interpreted as the time delay from the on-
set of the temperature gradient to the heat flux vector. While the
thermal wave model assumes that the temperature gradient always
precedes the heat flux, Tzou [8] proposed a dual-phase lag (DPL)
model that allows either the temperature gradient (cause) to pre-
cede heat flux vector (effect) or the heat flux vector (cause) to pre-
cede the temperature gradient (effect), i.e.,

q00ðr; t þ sqÞ ¼ �krTðr; t þ stÞ ð6Þ

where sq is the phase lag for the heat flux vector, while sT is the
phase lag for the temperature gradient. If sq > sT, the local heat flux
vector is the result of the temperature gradient at the same location
but an early time. On the other hand, if sq < sT, the temperature gra-
dient is the result of the heat flux at an early time. The first order
approximation of Eq. (6) is:

q00 þ sq
@q00

@t
¼ �k rT þ sT

@

@t
ðrTÞ

� �
ð7Þ

If Eq. (7) is used to replace the Fourier’s law of conduction, the
Pennes bioheat equation becomes [9,10]:

sq
@2Ts

@t2 þ 1þwbcb

qscs
sq

� �
@Ts

@t
¼as r2TsþsT

@

@t
ðr2TsÞ

� �

þwbcb

qscs
ðTb�TsÞþ

wbcbsq

qscs

@Tb

@t
þSmþS

qscs
þ sq

qscs

@Sm

@t
þ@S
@t

� �
ð8Þ
Under the assumption of constant blood temperature which the
Pennes equation is based upon, Eq. (8) becomes:

sq
@2Ts

@t2 þ 1þwbcb

qscs
sq

� �
@Ts

@t
¼ as r2Ts þ sT

@

@t
ðr2TsÞ

� �
þwbcb

qscs

�ðTb � TsÞ þ
Sm þ S
qscs

þ sq

qscs

@Sm

@t
þ @S
@t

� �

ð9Þ

which reduces to the Pennes bioheat equation (1) if sq = sT = 0. In
absence of phase lag for temperature gradient (sT = 0), Eq. (9) is re-
duced to the hyperbolic conduction model, Eq. (4). Currently, there
exists a lot of controversies in the literature about whether or not
DPL conduction and, more generally, any non-Fourier conduction
is important for biological tissues. Specifically, there is limited
experimental evidence for this phenomenon, and some of the
non-Fourier evidence has been called into question repeatedly
[11,12].

The DPL bioheat equation (9) is obtained by simply modifica-
tion of the fundamentally questionable Pennes bioheat equation,
which is not a convincing approach. Another reason that the
DPL bioheat equation is still not widely accepted by the research-
ers is lacking of appropriate theoretical models on estimation of
the two phase lag times. The root of dual-phase lag phenomena
in the living biological tissue is nonequilibrium between the blood
in artery and the surrounding tissue. In this paper, the DPL bio-
heat equations will be developed based on the nonequilibrium
heat transfer in the living tissue. A significant advantage of the
DPL bioheat equation that will be developed in this paper is that
the phase lag times can be expressed in terms of the properties of
blood and tissue and the interphase convective heat transfer coef-
ficient and blood perfusion rate. The phase lag times for heat flux
and temperature gradient are estimated using the available prop-
erties from the literature.

2. Nonequilibrium heat transfer in living tissues

Heat transfer in living biological tissues involves heat conduc-
tion in tissue, convective heat transfer between blood and vessel,
and blood perfusion. The biological tissue can be divided into
two regions: vascular region (blood vessel) and extravascular re-
gion (tissue). Therefore, the whole anatomical structure can be



Fig. 1. Schematic of blood vessel and surrounding tissue.
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treated as a fluid saturated porous medium (see Fig. 1), i.e., the
extravascular region is considered as a solid matrix and blood infil-
trates in the pore space of the porous medium [13]. The transport
phenomena in the biological tissue can thus be considered as con-
vection in porous media with internal heat generation. Fundamen-
tal formulations of the governing equations based on equilibrium
between the solid matrix and fluid within a porous media have
been presented in the literature [14–17].

For heat transfer in living biological tissues, the temperatures of
blood and tissue are different and the equilibrium assumption is
invalid. Although the Pennes bioheat equation recognized the dif-
ferent temperatures between the tissues and blood, the blood tem-
perature was assumed to be a constant. In reality, the blood
temperature changes as result of convective heat transfer between
the blood and tissue and blood perfusion. Xuan and Roetzel [18]
performed volume average to the local instantaneous governing
equation for blood and tissues obtained a two-temperature model.
The following equations are applicable for the case that the inter-
nal heat source by hyperthermia therapy is present:

eqbcb
@Tb

@t
þ V � rTb

� �
¼ r � ðkb;effrTsÞ þ abhbðTs � TbÞ þ eS ð10Þ

ð1� eÞqscs
@Ts

@t
¼ r � ðks;effrTsÞ þ abhbðTb � TsÞ

þ ð1� eÞSm þ ð1� eÞS ð11Þ

where the blood and tissue temperatures are volume averaged val-
ues, and kb,eff and ks,eff are effective thermal conductivity of blood
and the solid matrix (tissue), respectively. Eqs. (10) and (11) include
significant effects from the blood flow and direction, thermal diffu-
sion and the local thermal nonequilibrium between the blood and
the peripheral tissues. The effects of vascular geometry and size
can also be accounted for by the convective heat transfer coefficient
hb and the specific area of the blood vessel in the tissue ab.

Comparing Eq. (11) with Eq. (1) indicates that the blood perfu-
sion term is replaced by the interfacial convective heat transfer
term. The interfacial convective heat transfer and blood perfusion
are different processes and should not be confused [13]. The for-
mer is caused by temperature difference between the blood and
the vessel, regardless if blood perfusion occurs. On the other hand,
blood perfusion is the process of nutritive delivery of arterial blood
to a capillary bed in the biological tissue, i.e., a mass transfer pro-
cess. The temperature of the blood is decreased from Tb to Ts in the
perfusion process and the energy change in this process can be rep-
resented by the blood perfusion term in Eq. (1). Realizing the dif-
ference between the convective heat transfer and blood
perfusion, Nakayama and Kuwahara [13] presented a rigorous
mathematical development based on volume averaging theory
and the following set of volume averaged governing equation for
bioheat transfer and blood flow are obtained:
eqbcb
@Tb

@t
þ V � rTb

� �
¼ r � ðkb;effrTsÞ þ abhbðTs � TbÞ

þwbcbðTs � TbÞ þ eS ð12Þ

ð1� eÞqscs
@Ts

@t
¼ r � ðks;effrTsÞ þ abhbðTb � TsÞ

þwbcbðTb � TsÞ þ ð1� eÞSm þ ð1� eÞS ð13Þ

where the third terms in the right-hand side of Eqs. (12) and (13)
represent the contributions of blood perfusion on the energy bal-
ances in blood and tissue. Nakayama and Kuwahara [13] pointed
out that the reason that the blood perfusion terms are missing in
Eqs. (10) and (11) is that the term describing the transcapillary fluid
exchange via arterial-venous anastomoses was not retained in the
volume averaging in Ref. [18].

For the purpose of development of DPL bioheat equations, the
two-temperature model can be written in the following compact
forms:

eqbcb
@Tb

@t
þ V � rTb

� �
¼ ekbr2Ts þ GðTs � TbÞ þ eS ð14Þ

ð1� eÞqscs
@Ts

@t
¼ ð1� eÞksr2Ts þ GðTb � TsÞ þ ð1� eÞSm

þ ð1� eÞS ð15Þ

where

G ¼ abhb þwbcb ð16Þ

is a lumped convection–perfusion parameter and is referred to as
coupling factor between blood and the tissue. In arriving to Eqs.
(14) and (15), it is also assumed that the effective thermal conduc-
tivities of blood and tissue are constants: kb,eff = ekb and
ks,eff = (1 � e)ks. This treatment is accurate if the thermal conductiv-
ities of blood and tissue are close to each other [19].

3. Dual-phase lag model

The dual-phase lag bioheat equation can be obtained by elimi-
nating either tissue or blood temperature from the two-tempera-
ture model represented by Eqs. (14) and (15). Adding Eqs. (14)
and (15) together yields the following energy equation for the
blood saturated tissue:

eqbcb
@Tb

@t
þ ð1� eÞqscs

@Ts

@t
þ eqbcbV � rTb

¼ ekbr2Ts þ ð1� eÞksr2Ts þ ð1� eÞSm þ S ð17Þ

Following the assumption by Minkowycz et al. [20], it is
hypothesized that before onset of equilibrium, the blood tempera-
ture undergoes a transient process defined by:

eqbcb
@Tb

@t
¼ GðTs � TbÞ ð18Þ

which can be rearranged to obtain

Ts ¼ Tb þ
eqbcb

G
@Tb

@t
ð19Þ

Substituting Eq. (19) into Eq. (17), the following equation with
blood temperature as sole unknown is obtained:

sq
@2Tb

@t2 þ
@Tb

@t
þ eqbcb

ðqcÞeff
V � rTb ¼ aeff r2Tb þ sT

@

@t
ðr2TbÞ

� �

þ ð1� eÞSm þ S
ðqcÞeff

ð20Þ
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where the phase lags for heat flux and temperature gradient are

sq ¼
eð1� eÞqbcbqscs

GðqcÞeff
ð21Þ

sT ¼
eð1� eÞqbcbks

Gkeff
ð22Þ

where

ðqcÞeff ¼ eqbcb þ ð1� eÞqscs ð23Þ
keff ¼ ekb þ ð1� eÞks ð24Þ

aeff ¼
keff

ðqcÞeff
ð25Þ

are effective heat capacity, thermal conductivity, and thermal diffu-
sivity, respectively. Eq. (20) is the DPL bioheat equation with blood
temperature as unknown. It can bee seen from Eqs. (21) and (22) that
the phase lag times are expressed in terms of the properties of blood
and tissue and the coupling factor between the blood and tissue.

To obtain the bioheat equation with tissue temperature as sole
unknown, one can substitute Eq. (20) into Eq. (19) to eliminate the
blood temperature, i.e.,

sq
@2Ts

@t2 þ
@Ts

@t
þ eqbcb

ðqcÞeff
V � rTs ¼ aeff r2Ts þ sT

@

@t
ðr2TsÞ

� �

þ ð1� eÞSm þ S
ðqcÞeff

þ eqbcb

GðqcÞeff
ð1� eÞ @Sm

@t
þ @S
@t

� �

ð26Þ

where it is assumed that @V/ot � 0 to simplify the resulting equa-
tion. Eq. (26) is the bioheat equation that describes the tissue tem-
perature distribution in the living biological tissue. Although Eq.
(26) has the from similar to Eq. (9), the following differences are
noted: (a) tissue temperature is the only unknown in the bioheat
equation and the blood temperature does not appear, (b) the effect
of conduction and convection in the blood was not included in Eq.
(9) but these two effects are incorporated in Eq. (26), (c) the effect
of blood flow is not necessarily homogeneous because the direc-
tional blood flow can be easily accounted for by the convective term
on the left-hand side of Eq. (26), and (d) the phase lag times sq and
sT can be obtained from Eqs. (21) and (22).

While Eq. (26) is in the form that can be directly used to obtain
the tissue temperature if the blood velocity is known, it will be
helpful if it can be casted in the form that is similar to the Pennes
bioheat equation. The contribution of blood flow on the tempera-
ture distribution is represented by the third term on the left-hand
side of Eq. (26) or the second term on the right-hand side of Eq.
(15). Since both of these two terms represent the same physical
phenomenon, one can expect that [21]

�eqbcbV � rTs � GðTb � TsÞ ð27Þ

Substituting Eq. (27) into Eq. (26), the following DPL bioheat
equation is obtained

sq
@2Ts

@t2 þ
@Ts

@t
¼ aeff r2Ts þ sT

@

@t
ðr2TsÞ

� �
þ G
ðqcÞeff

ðTb � TsÞ

þ ð1� eÞSm þ S
ðqcÞeff

þ eqbcb

GðqcÞeff
ð1� eÞ @Sm

@t
þ @S
@t

� �
ð28Þ

which has the similar form to the DPL bioheat equation (9). The dif-
ferences between the present DPL bioheat equation (28) and the
bioheat equation (9) obtained by using Eq. (7) in the classical
Pennes bioheat equation include: (a) Eq. (9) considers heat conduc-
tion in tissue only but Eq. (26) considered the effect of conduction
by both tissue and blood, and (b) the phase lag times sq and sT

can be obtained from Eqs. (21) and (22). Depending on whether
the blood velocity is available, either Eq. (26) or (28) are acceptable
form of DPL bioheat equations.
4. Phase lag times for living biological tissues

One of the most significant advantages of the DPL bioheat equa-
tions (26) or (28) over the DPL bioheat equation (9) is that the
phase lag times are expressed in terms of the properties of blood
and tissue and the interphase convective heat transfer coefficient
and blood perfusion rate. The phase lag times of the living biolog-
ical tissues will be estimated in this section. Substituting Eqs. (23)
and (24) into Eqs. (21) and (22), the phase lag times for heat flux
and temperature gradient become

sq ¼
eð1� eÞ

½e=Csb þ ð1� eÞ�
qbcb

G
ð29Þ

sT ¼
eð1� eÞ

½e=Ksb þ ð1� eÞ�
qbcb

G
ð30Þ

where

Csb ¼ qscs=ðqbcbÞ ð31Þ
Ksb ¼ ks=kb ð32Þ

are the ratios of heat capacities and thermal conductivities of tissue
and blood. Since the root of dual-phase lag phenomena is the non-
equilibrium between blood and tissue, it is evident from Eqs. (29)
and (30) that the phase lag times are governed by the porosity, heat
capacities of blood and tissues, coupling factor, and the ratio of
thermal conductivities of tissue and blood. On the contrary that
the thermal conductivity of blood did not appear in the existing
DPL models [e.g., Eq. (9)], this paper revealed that the phase lag
time for temperature depends on the ratio of thermal conductivities
of tissue and blood (but not the individual values of thermal con-
ductivities for tissue and blood).

The coupling factor between blood and tissue, G, appeared in
Eqs. (29) and (30) is an very important property of the living tissue
because it dictates energy exchange between the blood and sur-
rounding tissues. As indicated by Eq. (16), both convective heat
transfer and blood perfusion contribute to the coupling between
the blood and tissue. For the bundle of vascular tube with diameter
of db, the specific area and heat transfer coefficient are ab = 4e/db

and hb = Nu(kb/db), respectively [13]. Therefore, the product of spe-
cific area and heat transfer coefficient becomes

abhb ¼
4ekb

d2
b

Nu ð33Þ

Substituting Eq. (33) into Eq. (16), the coupling factor becomes

G ¼ 4ekb

d2
b

Nuþwbcb ð34Þ

where the Nusselt number can be approximately set to Nu = 4.93
[22,23]. Therefore, the coupling factor can be obtained if the poros-
ity, diameter of the vascular tube, and blood perfusion rate are
available.

Yuan [24] presented a numerical analysis of an equivalent heat
transfer coefficient in a porous model for simulating a biological
tissue in a hyperthermia therapy based on the nonequilibrium heat
transfer model of Ref. [18]. Following the same design parameter
as Ref. [25], the blood vessel was assumed to be uniformly distrib-
uted in the tissue so that the whole domain was considered to be
an assembly of repeated hexagon unit that has an equivalent circle



Table 2
Coupling factor and phase lag times (kb = ks = 0.5 W/m K, qb = qs = 1050 kg/m3, and
cb = cs = 3770 J/kg K).

Case abhb (W/m3 K) cbwb (W/m3 K) G (W/m3 K) sq (s) sT (s)

1 31,094 3770 34,864 0.464 0.464
2 59,895 7540 67,435 0.460 0.460
3 85,540 11,310 96,850 0.457 0.457
4 105,044 15,080 120,124 0.452 0.452
5 132,050 18,850 150,900 0.451 0.451
6 25,158 3770 28,928 1.756 1.756
7 47,538 7540 55,078 1.752 1.752
8 67,960 11,310 79,270 1.733 1.733
9 89,875 15,080 104,955 1.723 1.723
10 100,643 18,850 119,493 1.663 1.663
11 22,472 3770 26,242 6.825 6.825
12 39,948 7540 47,488 6.449 6.449
13 53,592 11,310 64,902 6.127 6.127
14 67,960 15,080 83,040 5.866 5.866
15 77,777 18,850 96,627 5.630 5.630
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with a diameter of ds (see Fig. 2). Under this ideal structure, the dis-
tance between two blood vessels is L = 1.05ds, and the porosity of
the biological tissue is e = (db/ds)2. Different diameters of blood ves-
sels, porosity, and perfusion coefficient are investigated and the
parameters are summarized in Table 1.

With the structure and blood perfusion parameters specified in
Table 1, the coupling factors and the phase lag times are functions
of the thermophysical properties of blood and tissue only. Yuan
[24] assumed that the thermophysical properties of blood and tis-
sues are identical: kb = ks = 0.5W/m K, qb = qs = 1050 kg/m3, and
cb = cs = 3770 J/kg K. The contributions of convective heat transfer
and blood perfusion in blood-tissue coupling, coupling factor,
and the phase lag times with the above properties are listed in Ta-
ble 2. It can be seen that while the coupling between the blood and
tissue is dominated by contribution of the convective heat transfer,
the contribution of blood diffusion on coupling between blood and
tissue ranges from 10% to 20%, depending on the blood perfusion
rate. This result quantitatively confirms the reasoning by Nakay-
ama and Kuwahara [13] who suggested that the contributions of
blood perfusion on the interphase heat transfer is not negligible.
The phase lag times for heat flux and temperature gradient are
identical (sq = sT) because Ksb = Csb = 1 [see Eq. (29) and (30)]. For
the three different blood vessel diameters studied, it can be seen
that the phase lag times significantly increase with increasing
blood vessel diameter, which means the dual-phase lag phenome-
non is more pronounced when large blood vessel is present. For the
db

ds

L

Fig. 2. Hexagonal unit of blood vessel and surrounding tissue.

Table 1
Structures and perfusion coefficient studied in Ref. [23].

Case ds (mm) db (mm) e wb (kg/m3 s)

1 17.83 1.14 0.0041 1
2 12.85 1.14 0.0079 2
3 10.75 1.14 0.0113 3
4 9.7 1.14 0.0139 4
5 8.65 1.14 0.0175 5
6 19.82 2.28 0.013 1
7 14.42 2.28 0.025 2
8 12.06 2.28 0.036 3
9 10.48 2.28 0.048 4
10 9.92 2.28 0.053 5
11 20.98 4.56 0.0475 1
12 15.73 4.56 0.0845 2
13 13.58 4.56 0.1133 3
14 12.06 4.56 0.1437 4
15 11.27 4.56 0.1645 5
same blood vessel diameter, the dual-phase lag times slightly de-
crease as blood perfusion rate increases.

The thermophysical properties of tissue depend on the type and
location of the tissue in the body. Therefore, the assumption of the
same thermophysical properties for blood and tissue is not always
valid. Evaluation of the dual-phase lag times is then carried out for
the biological tissue studied in Ref. [10]: qs = 1000 kg/m3,
ks = 0.628 W/m K, cs = 4187 J/kg K, qb = 1060 kg/m3, and cb = 3860
J/kg K. The thermal conductivity for blood was not used in Ref. [10]
since the contribution of heat conduction in the blood was consid-
ered in Ref. [10]. On the other hand, the thermal conductivity of
blood (kb = 0.5W/m K) used by Yuan [24] agreed with other sources
[25] and appeared to be reasonable. The diameter of the blood vessel
and the porosity of the tissue were not available in Ref. [10] so that
values of db and e in Table 1 are reused. The contributions of convec-
tive heat transfer and blood perfusion in blood-tissue coupling, cou-
pling factor, and the phase lag times with the properties used in Ref.
[10] are listed in Table 3. Similar to Table 2, the coupling between the
blood and tissue is dominated by contribution of the convective heat
transfer, and the contribution of blood diffusion on coupling be-
tween blood and tissue also ranges from 10% to 20%. The ratios of
thermal conductivities and heat capacities are Ksb = 1.256 and
Csb = 1.023, respectively. For the cases of db = 1.14 mm, the phase
lag times for heat flux and temperature gradient are almost identical
and are increased by 3% compared to the cases in Table 2 with the
same porosity and perfusion rate. For the cases of db = 2.28 mm,
the phase lag times for temperature gradient are slightly higher than
that for the heat flux but the difference is less than 1%. Compared
Table 3
Coupling factor and phase lag times (qs = 1000 kg/m3, ks = 0.628 W/m K, cs = 4187 J/
kg K, qb = 1060 kg/m3, and cb = 3860 J/kg K).

Case abhb (W/m3 K) cbwb (W/m3 K) G (W/m3 K) sq (s) sT (s)

1 31,094 3860 34,954 0.478 0.478
2 59,895 7720 67,615 0.474 0.475
3 85,540 11,580 97,120 0.471 0.472
4 105,044 15,440 120,484 0.466 0.467
5 132,050 19,300 151,350 0.465 0.466
6 25,158 3860 29,018 1.810 1.814
7 47,538 7720 55,258 1.806 1.814
8 67,960 11,580 79,540 1.787 1.798
9 89,875 15,440 105,315 1.777 1.793
10 100,643 19,300 119,943 1.714 1.731
11 22,472 3860 26,332 7.038 7.099
12 39,948 7720 47,668 6.653 6.757
13 53,592 11,580 65,172 6.324 6.456
14 67,960 15,440 83,400 6.057 6.219
15 77,777 19,300 97,077 5.815 5.994
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with cases in Table 2 with the same porosity and perfusion rate, the
maximum changes of phase lag times for heat flux and temperature
are 3% and 4%, respectively. When the diameter of the blood vessel is
increased to 4.56 mm, differences between the phase lag times for
heat flux and temperature are between 0.9% and 3.1%. Compared
with the cases in Table 2 with the same porosity and perfusion rate,
the maximum changes of phase lag times for heat flux and temper-
ature are 3% and 6%, respectively.

Although the thermal conductivities and heat capacities of blood
and tissue in Table 3 are different (Ksb = 1.256 and Csb = 1.023), the
phase lag times for heat flux and temperature gradient are still very
close to each other because the maximum difference between sq and
sT, which occurs in Case 15, is only 3.1%. Therefore, one can conclude
that the phase lag times of the temperature gradient (sT) and the
phase lag of the heat flux (sq) are almost identical for all parameters
studied in this paper. It should be pointed out that this conclusion is
valid only under the parameters that used in this paper due to large
variation of thermophysical properties and structure of different
biological tissues. Zhou et al. [10] have found that the DPL bioheat
conduction equation can be reduced to the Fourier heat conduction
equation only if both the phase lag times of the temperature gradient
(sT) and the phase lag of the heat flux (sq) are zero. This is different
from the DPL model for pure conduction materials, for which it can
be reduced to the Fourier’s heat conduction model provided that
sq = sT. Therefore, the dual-phase effect in biological tissue will be
important even though sq � sT.

Three forms of DPL bioheat equations are presented in this pa-
per. While the sole unknown in Eq. (20) is the blood temperature,
Eq. (26) is in term of tissue temperature. Applications of these two
bioheat equations require the knowledge of the intrinsic averaged
velocity vector in the living tissue, which can be obtained by solv-
ing continuity and momentum equations in porous media [21]. If
the blood temperature distribution is known (e.g., constant), Eq.
(28) can be used to determine the tissue temperature.

5. Conclusions

Generalized dual-phase lag bioheat equations are obtained by
analyzing nonequilibrium heat transfer in living biological tissue.
The dual-phase lag bioheat equations with blood or tissue temper-
ature as sole unknown temperature are obtained by eliminating
the tissue or blood temperature from the nonequilibrium model.
The phase lag times are then expressed in terms of the properties
of blood and tissue and the interphase convective heat transfer
coefficient and blood perfusion rate. When the density, specific
heat, and thermal conductivities of blood and tissue are the same,
the phase lag times for heat flux and temperature gradient are
identical (sq = sT). The phase lag times significantly increase with
increasing blood vessel diameter, which means the dual-phase
lag phenomenon is more pronounced when large blood vessel is
present. For the same blood vessel diameter, the dual-phase lag
times slightly decrease as blood perfusion rate decreases. When
the difference between density, specific heat, and thermal conduc-
tivities of blood and tissues are considered, the phase lag times for
heat flux and temperature gradient are still very close to each
other. Therefore, the phase lag times of the temperature gradient
(sT) and the phase lag of the heat flux (sq) are almost identical
for all parameters studied in this paper. Since the DPL bioheat con-
duction equation cannot be reduced to the Fourier heat conduction
equation unless both the phase lag times of the temperature gradi-
ent (sT) and the phase lag of the heat flux (sq) are zero, the dual-
phase effect in biological tissue will be important even though
sq � sT.
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